To make a final choice you will need to consult the tables of technical data which are normally provided in catalogues. They contain a great deal of useful information but they can be difficult to understand if you are not familiar with the abbreviations used. The table below shows the most important technical data for some popular transistors, tables in catalogues and reference books will usually show additional information but this is unlikely to be useful unless you are experienced. The quantities shown in the table are explained below.
NPN transistors | ||||||||
Code | Structure | Case style | IC max. | VCE max. | hFE min. | Ptot max. | Category (typical use) | Possible substitutes |
BC107 | NPN | TO18 | 100mA | 45V | 110 | 300mW | Audio, low power | BC182 BC547 |
BC108 | NPN | TO18 | 100mA | 20V | 110 | 300mW | General purpose, low power | BC108C BC183 BC548 |
BC108C | NPN | TO18 | 100mA | 20V | 420 | 600mW | General purpose, low power | |
BC109 | NPN | TO18 | 200mA | 20V | 200 | 300mW | Audio (low noise), low power | BC184 BC549 |
BC182 | NPN | TO92C | 100mA | 50V | 100 | 350mW | General purpose, low power | BC107 BC182L |
BC182L | NPN | TO92A | 100mA | 50V | 100 | 350mW | General purpose, low power | BC107 BC182 |
BC547B | NPN | TO92C | 100mA | 45V | 200 | 500mW | Audio, low power | BC107B |
BC548B | NPN | TO92C | 100mA | 30V | 220 | 500mW | General purpose, low power | BC108B |
BC549B | NPN | TO92C | 100mA | 30V | 240 | 625mW | Audio (low noise), low power | BC109 |
2N3053 | NPN | TO39 | 700mA | 40V | 50 | 500mW | General purpose, low power | BFY51 |
BFY51 | NPN | TO39 | 1A | 30V | 40 | 800mW | General purpose, medium power | BC639 |
BC639 | NPN | TO92A | 1A | 80V | 40 | 800mW | General purpose, medium power | BFY51 |
TIP29A | NPN | TO220 | 1A | 60V | 40 | 30W | General purpose, high power | |
TIP31A | NPN | TO220 | 3A | 60V | 10 | 40W | General purpose, high power | TIP31C TIP41A |
TIP31C | NPN | TO220 | 3A | 100V | 10 | 40W | General purpose, high power | TIP31A TIP41A |
TIP41A | NPN | TO220 | 6A | 60V | 15 | 65W | General purpose, high power | |
2N3055 | NPN | TO3 | 15A | 60V | 20 | 117W | General purpose, high power | |
Please note: the data in this table was compiled from several sources which are not entirely consistent! Most of the discrepancies are minor, but please consult information from your supplier if you require precise data. | ||||||||
PNP transistors | ||||||||
Code | Structure | Case style | IC max. | VCE max. | hFE min. | Ptot max. | Category (typical use) | Possible substitutes |
BC177 | PNP | TO18 | 100mA | 45V | 125 | 300mW | Audio, low power | BC477 |
BC178 | PNP | TO18 | 200mA | 25V | 120 | 600mW | General purpose, low power | BC478 |
BC179 | PNP | TO18 | 200mA | 20V | 180 | 600mW | Audio (low noise), low power | |
BC477 | PNP | TO18 | 150mA | 80V | 125 | 360mW | Audio, low power | BC177 |
BC478 | PNP | TO18 | 150mA | 40V | 125 | 360mW | General purpose, low power | BC178 |
TIP32A | PNP | TO220 | 3A | 60V | 25 | 40W | General purpose, high power | TIP32C |
TIP32C | PNP | TO220 | 3A | 100V | 10 | 40W | General purpose, high power | TIP32A |
Please note: the data in this table was compiled from several sources which are not entirely consistent! Most of the discrepancies are minor, but please consult information from your supplier if you require precise data. |
Structure | This shows the type of transistor, NPN or PNP. The polarities of the two types are different, so if you are looking for a substitute it must be the same type. |
Case style | There is a diagram showing the leads for some of the most common case styles in the Connecting section above. This information is also available in suppliers' catalogues. |
IC max. | Maximum collector current. |
VCE max. | Maximum voltage across the collector-emitter junction. You can ignore this rating in low voltage circuits. |
hFE | This is the current gain (strictly the DC current gain). The guaranteed minimum value is given because the actual value varies from transistor to transistor - even for those of the same type! Note that current gain is just a number so it has no units. The gain is often quoted at a particular collector current IC which is usually in the middle of the transistor's range, for example '100@20mA' means the gain is at least 100 at 20mA. Sometimes minimum and maximum values are given. Since the gain is roughly constant for various currents but it varies from transistor to transistor this detail is only really of interest to experts. Why hFE? It is one of a whole series of parameters for transistors, each with their own symbol. There are too many to explain here. |
Ptot max. | Maximum total power which can be developed in the transistor, note that a heat sink will be required to achieve the maximum rating. This rating is important for transistors operating as amplifiers, the power is roughly IC × VCE. For transistors operating as switches the maximum collector current (IC max.) is more important. |
Category | This shows the typical use for the transistor, it is a good starting point when looking for a substitute. Catalogues may have separate tables for different categories. |
Possible substitutes | These are transistors with similar electrical properties which will be suitable substitutes in most circuits. However, they may have a different case style so you will need to take care when placing them on the circuit board. |
Darlington pair
This is two transistors connected together so that the amplified current from the first is amplified further by the second transistor. This gives the Darlington pair a very high current gain such as 10000. Darlington pairs are sold as complete packages containing the two transistors. They have three leads (B, C and E) which are equivalent to the leads of a standard individual transistor. You can make up your own Darlington pair from two transistors.
For example:
- For TR1 use BC548B with hFE1 = 220.
- For TR2 use BC639 with hFE2 = 40.
The pair's maximum collector current IC(max) is the same as TR2.
One major disadvantage of the Darlington configuration must be kept in mind. The collector to emitter voltage can never get down to the small fraction of a volt that a single transistor can do. When the collector of TR2 gets down to 0.6V, TR1 becomes current starved and can no longer feed more current to TR2's base. There is not enough current to bring either collector below 0.6V. This makes a very big difference when the Darlington is used for high currents, because it will have to dissipate much more power than a single transistor.
ReplyDelete